Abstract

Novel mesostructured silica thin films were prepared on a Si substrate by a vapor-phase synthesis. Vapor of tetraethoxysilane (TEOS) was infiltrated into a surfactant film consisting of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Nanophase transition from a lamellar structure to a two-dimensional cage structure of a silica-surfactant nanocomposite was found under vapor infiltration. The rearrangement into the cage structure implies high mobility of the silica-surfactant composites in solid phase. The silica thin films have two-dimensionally connected cagelike mesopores and are isotropic parallel to the film surface. The structure of pores of the films is advantageous for next-generation low-k films. The mesoporous structure has a large lattice parameter d of approximately 102 A, silica layer thickness of approximately 58 A, pillar diameter in the middle of approximately 60 A, pore size of approximately 72 A, BET surface area of approximately 729 m(2)/g, and pore volume of approximately 1.19 cm(3)/g. The films synthesized by the vapor infiltration show a lower concentration of residual Si-OH groups compared to the films prepared by a conventional sol-gel method. The films show high thermal stability up to 900 degrees C and high hydrothermal stability. This method is a simpler process than conventional sol-gel techniques and attractive for mass production of a variety of organic-inorganic composite materials and inorganic porous films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.