Abstract
A trend of growing power demand on both civilian and military aircrafts, owing to increasingly powerful electrical systems such as avionics, in-flight entertainment, and radar, has led to considerable challenges in thermal management. Left disregarded, the significant heat generated by components within would have an adverse impact on system performance and reliability. Although crucial, suitable methods of thermal management are limited by various aerospace considerations, such as weight, size, and reliability. In this respect, ThermoElectric Coolers (TECs) surface as a possible method, given that they are lightweight and compact in size, with a high mean time between failures (MTBF) and ability to change from cooling to heating through a simple voltage polarity reversal. In this project, studies were carried out to determine the feasibility of employing TEC in a specified avionics chassis under an environment of 55 °C still air at 1 atmospheric pressure, with the case temperature (T case ) of components as the quantifying variable. Numerical simulations of the chassis were carried out in FloTHERM, while validation of the modeling approach and results was done through data collection from an experimental setup. While results showed that introduction of the TEC under the above-mentioned environmental conditions reduced the temperature of the component being cooled by 9.02 °C, a cooled T case of 86.16 °C was still higher than the target T case of 73.9 °C. The use of a TEC alone proved to be an inadequate form of thermal management. The results revealed that the boundary condition at the TEC hot side would have to be augmented through the introduction of flow or heat sinks to bring the component T case down further. In addition, the use of TEC would be more suitable for applications requiring precision temperature control or active cooling.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have