Abstract
The present study deals with the application of the transient thermochromic liquid crystal (TLC) technique in a flow network of intersecting circular passages as a potential internal turbine component cooling geometry. The investigated network consists of six circular passages with a diameter d = 20mm that intersect coplanar at an angle θ = 40°, the innermost in three, the outermost in one intersection level. Two additional non-intersecting passages serve as references. Such a flow network entails specific characteristics associated with the transient TLC method that have to be accounted for in the evaluation process: the strongly curved surfaces, the mixing and mass flow redistribution at each intersection point, and the resulting gradients between the wall and passage centerline temperatures. All this impedes the choice of a representative fluid reference temperature, which results in deviations using established evaluation methods. An alternative evaluation approach is introduced, which is supported by computational results obtained from steady-state three-dimensional RANS simulations using the SST turbulence model. The presented analysis uncouples local heat transfer coefficients from actually measured local temperatures but uses the time information of the thermocouples instead that represents the fluid temperature step change and evolution along the passages. This experimental time information is transferred to the steady-state numerical bulk temperatures, which are finally used as local references to evaluate the transient TLC experiments. As effective local mass flow rates in the passage sections are considered, the approach eventually allows for a conclusion whether heat transfer is locally enhanced due to higher mass flow rates or the intersection effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have