Abstract
Abstract The aim of presented study was to obtain the PLZT:Yb3+ ceramics. Nanopowders of itterbium doped PLZT materials were synthesized by the sol-gel method from high quality metaloorganic precursors, as lead (II) acetate, lanthanum acetate, ytterbium acetate, zirconium (IV) propoxide and titanium (IV) propoxide. Anhydrous acetic acid and n-propyl alcohol were used as solvents, while acetyloacetone was added as stabilizer of hydrolysis reactions. Thermal evolution of the dried gels, before and after calcination, was studied by the simultaneous thermal analysis. The amorphous PLZT:Yb3+ gels were first calcined in the furnace at T = 850°C, and then mixed in the planetary ball mill. Additionally, the mean particle sizes were calculated by means of powder specific surface area measurements, based on the BET physical adsorption isotherm. Such obtained powders were subsequently pressed into pellets, and sintered by the free sintering method at temperature T = 1250°C / 6h. The morphology of fabricated PLZT:Yb3+ ceramic powders and samples was studied using Scanning Electron Microscopy. Chemical characterization of samples was carried on using the Energy-dispersive X-ray spectroscopy - EDS system. Studies provided detailed data concerning the relationships between doping and preparing conditions on the basic physical and chemical properties of obtained ceramic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.