Abstract

The combustion of fossil fuels is an important source of air pollution due to the presence of sulfur-based compounds. In this regard, a reliable atomistic forcefield is required in order to provide insights on solute-solvent interactions, and in designing high aromatic sulfur extracting solvents. In the present work, the excess chemical potentials of thiophene within four 1-butyl-3-methylimidazolium-based ionic liquids were evaluated through the free energy perturbation with replica exchange molecular dynamics methodology by using the CL&Pol polarizable force fields based on Drude oscillators. First, in order to validate the accuracy of the polarizable force fields, a series of thermodynamic properties of pure ionic liquids such as diffusion coefficient, liquid density, dielectric constant, and heat of vaporization were computed using the CL&Pol force field and compared against experimental values. The results from the calculated thiophene excess chemical potential values, indicated that the [C4mim][CH3COO] ionic liquid presents the more favorable excess chemical potential (higher solubility) with respect to the thiophene molecule at both 300 K and 343 K in comparison to the other ionic liquids studied. The structural analysis revealed that the ionic liquid anion interacts more closely and with well-defined RDF peaks with the thiophene molecule, the larger anions present higher surrounding particle densities with the thiophene molecules (solvation shell), while the monoatomic anions interact preferentially with the hydrogens close to the sulfur thiophene atom; In contrast no marked solvation layers were observed with the ionic liquid cations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call