Abstract

We perform terrestrial laser scanning (TLS) to detect changes in surface morphology of a mud volcano in Murono, north-central Japan. The study site underwent significant deformation by a strong earthquake in 2011, and the surface deformation has continued in the following years. The point cloud datasets were obtained by TLS at three different times in 2011, 2013 and 2014. Those point clouds were aligned by cloud-based registration, which minimizes the closest point distance of point clouds of unchanged ground features, and the TLS-based point cloud data appear to be suitable for detecting centimeter-order deformations in the central domain of the mud volcano, as well as for measurements of topographic features including cracks of paved ground surface. The spatial patterns and accumulative amount of the vertical deformation during 2011–2014 captured by TLS correspond well with those previously reported based on point-based leveling surveys, supporting the validity of TLS survey.

Highlights

  • Geodetic study often requires highly accurate and precise measurements of ground surface positions, and several approaches have been developed for the detection of ground surface deformation including leveling, total station and global satellite navigation system (GNSS) (e.g., Hubbard and Glasser 2005; Mottershead et al 2008; McCormac et al 2012)

  • We examine the applicability of terrestrial laser scanning (TLS) measurement for an active mud volcano where both gradual and abrupt surficial changes have been observed with precise measurements using the leveling method (Kusumoto et al 2014, 2015)

  • Topographic features are explored from the high-definition data by TLS, and changes in ground surface elevation are examined by multi-temporal TLS measurements

Read more

Summary

Introduction

Geodetic study often requires highly accurate and precise measurements of ground surface positions, and several approaches have been developed for the detection of ground surface deformation including leveling, total station and global satellite navigation system (GNSS) (e.g., Hubbard and Glasser 2005; Mottershead et al 2008; McCormac et al 2012). Such previous approaches have often been limited to some specific points of measurement, and if one would like to know the characteristics of spatially variable deformation of ground surface, increasing the density of measurement points could be one solution which requires significant time of measurement in the field, or one needs to introduce InSAR (e.g., Antonielli et al 2014). Because the TLS approach generally provides morphological information of the surface of a target object (Heritage and Large, 2009) and not for its internal structures, here we focus on the surficial deformation of the mud volcano, whose amount is on the order of centimeters in a year (Kusumoto et al 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call