Abstract

Manufacturing processes could be well characterized by both the quantitative and the qualitative measurements of their performances. In case of conflicting type performance measures, it is necessary to get possible optimum values of all performances simultaneously, like higher material removal rate (MRR) with lower average surface roughness (ASR) in electric discharge machining (EDM) process. EDM itself is a stochastic process and predictions of responses – MRR and ASR are still difficult. Advanced structural risk minimization based learning system – support vector machine (SVM) is, therefore, applied to capture the random variations in EDM responses in a robust way. Internal parameters of SVM – C, ɛ and σ are tuned by modified teaching learning based optimization (TLBO) procedure. Subsequently, using the developed SVM model as a virtual data generator of EDM process, responses are generated at the different points in the experimental space and power law models are fitted to the estimated data. Varying the weight factors, different weighted combinations of the inverse of MRR and the ASR are minimized by modified TLBO. Pseudo Pareto front passing through the optimum results, thus obtained, gives a guideline for selection of optimum achievable value of ASR for a specific demand of MRR. Further, inverse solution procedure is elaborated to find the near-optimum setting of process parameters in EDM machine to obtain the specific need based MRR-ASR combination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call