Abstract

ABSTRACT Evaluation of transient stability is integral to dynamic security assessment of power systems. It deals with the assessment of the ability of the system to remain in equilibrium for large disturbances, such as faults. Deterministic approaches for transient stability assessment are becoming unsuitable, considering the rising uncertainties. Moreover, due to its intensive computation effort, the conventional time-domain approach for transient stability assessment is not appropriate for online application, thereby motivating the requirement to apply a soft computing technique. Thus, this paper investigates artificial neural network-based supervised machine learning, for predicting the transient stability of a power system, considering uncertainties of load, faulted line, fault type, fault location, and fault clearing time. The training of the neural network was accomplished using suitable system features as inputs, and probabilistic transient stability status indicator as the output. Results obtained for the IEEE 14-bus test system demonstrated that the proposed method offers a fast technique for probabilistic transient stability prediction with a superior accuracy, and thereby, signifying a strong possibility for neural network application in dynamic security assessment. DIgSILENT PowerFactory and MATLAB was utilised for transient stability time-domain simulations (for obtaining training data for the neural network), and for applying supervised machine learning, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.