Abstract

In order to build a compact linear accelerator, high acceleration gradients of superconducting radio frequency (SRF) cavities have to be achieved. In many large accelerators, e.g. XFEL, CEBAF or SNS, operational limitations are caused either by a limit on available overall cooling power of refrigerators or on cooling capabilities of sc cavities. So, for the further improving of sc cavity cooling, it is possible to increase either a quality factor (Q 0) or to improve a heat transfer at the cavity surfaces. Application of a sub-cooled superfluid helium gives several advantages, e.g. higher heat flux densities, longer time for onset of a film boiling regime and shorter recovery time, reduced Kapitza resistances, etc. In the present paper, application of sub-cooled superfluid (sf) helium for linac-based Free Electron Lasers, Energy Recovery and Proton Linacs is considered. In order to limit the present discussion, its application to CEBAF/SNS-style cryomodules is discussed in detail. For operation at higher RF power levels, further cooling improvements of a fundamental power coupler are needed and design modifications also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.