Abstract

Shortwave infrared (SWIR) technology is characterized by high efficiency and convenience and is widely used in the mineral exploration of porphyry, epithermal, and skarn types. However, studies on the SWIR spectral features of porphyry tungsten deposits are still lacking. The Dahutang tungsten deposit has reached an ultra large scale, characterized by the porphyry type. Based on the SWIR spectral features of white mica and its petrographic, geochemical, and Raman spectral features, this paper discusses the use of shortwave infrared and Raman spectral features and major and trace element contents in white mica for exploration of the Shimensi mine in Dahutang. The results showed that the SWIR wavelength of the single-frequency Al-O-H absorption peak position (Pos2200) of white micas in ore-bearing intrusions were over 2209 nm; the Raman shift of aluminium atom bridge-bonds (Al, O (br)) were mainly located between 410 and 420 cm−1. The contents of Si, Fe, and Mg were relatively high; the contents of Al, Na, and K were low; and the variation of the Nb/Ta value reflected the magmatic evolution degree. The shift of Pos2200 of white mica showed a correlation with the Raman spectral features and contents of Si, Al, and other elements. This study shows that the SWIR spectral features of white mica were useful for further exploration of the Shimensi area in Dahutang and provided a potential tool for the exploration of porphyry tungsten deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call