Abstract

Uniformly dispersed Co/SiO2 catalysts (10–60 wt% on metal basis) were prepared by the sol-gel method, and used for the Fischer-Tropsch (F-T) synthesis in slurry phase at 503 K and 1 MPa in a flow of synthesis gas (H2/CO = 2/1, W/F = 10 g-catal·h/mol). The catalysts were characterized by temperature-programmed reduction (TPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and chemisorption. Although CO conversion over the unpromoted catalysts prepared by the sol-gel method was lower than the conventional catalysts prepared by impregnation, the catalytic activity of the former catalysts was more stable than the latter catalysts. The conversion was improved drastically, when 0.01–1 wt% of Ir or Ru (on metal basis) was added to the catalysts prepared by the sol-gel method. The TPR and XPS spectra and the H2 chemisorption revealed that the noble metal addition was responsible for the reduction of Co particles in the catalysts. It is supposed that the durability of the promoted catalysts prepared by the sol-gel method was ascribed to the high dispersion of Co particles stabilized on the catalyst surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call