Abstract

The objective of this paper was to study a preferential oxidation (PROX) of carbon monoxide over monometallic catalysts including Pt, Au and Pt–Au bimetallic catalyst supported on ceria in hydrogen-rich reformate. Single step sol–gel method (SSG) and impregnation on sol–gel method (ISG) were chosen for the preparation of the catalysts. The characteristics of these catalysts were investigated by X-ray diffractometer (XRD), Brunauer–Emmet–Teller (BET) method, transmission electron microscope (TEM), scanning electron microscope (SEM) and temperature-programmed reduction (TPR). The XRD patterns of the catalysts showed only the peaks of ceria crystallite and no metal peak appeared. From TEM images, the active components were seen to be dispersed throughout the ceria support. The TPR patterns of PtAu/CeO 2 catalyst prepared by SSG showed the reduction peaks were within a low temperature range and therefore, the catalysts prepared by SSG exhibited excellent catalytic activity for preferential oxidation of CO. Bimetallic Pt–Au catalyst improved the activity (90% conversion and 50% selectivity at 90 °C) because of the formation of a new phase. When the metal content of (1:1) PtAu/CeO 2 catalyst prepared by SSG was increased, the CO conversion did not change much while the selectivity decreased in the low temperature range (50–90 °C). The CO conversion increased with increasing W/F ratio. The presence of CO 2 and H 2O had a negative effect on CO conversion and selectivity due to blocking of carbonate and water on active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.