Abstract
Abstract Paper mill effluent has been characterized as recalcitrant because of containing lignin and its derivatives. Since biofilm system exhibits a notable potential for the removal of recalcitrant contaminants, a sequencing batch biofilm reactor (SBBR) was employed to treat coagulated recycled paper mill effluent in this study. The results indicated that the SBBR removed 91.3 % of chemical oxygen demand (COD), whilst total suspended solid (TSS) and color removal reached 83.1 % and 71.0 %, respectively. The microbial analysis suggested that three typical heterotrophic phyla, Proteobacteria, Bacteroidetes and Acidobacteria are dominant bacteria and reflected the removal of recalcitrant contaminants. The COD removal rate of SBBR is evidently superior to conventional activated sludge process due to high sludge concentration as well as long sludge retention time (SRT). Whilst the problem of sludge bulking can be successfully avoided, the blockage of reactor caused by TSS accumulation and microbial growth deserve further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.