Abstract

A rheology originally proposed for high damping rubber bearing (HDRB) is applied to natural rubber bearing (RB) and lead rubber bearing (LRB) along with its simplified form. Comparing HDRB, the elasticplastic equilibrium responses were found to be more dominant than the rate-dependent response due to viscosity for RB and LRB. Moreover, the overstress in loading/unloading was found to be analogous. The dependency of nonlinear viscosity on current strain was found to be weak in contrast to the existence of considerable nonlinearity in elastic response. The original rheology model considers the nonlinear elastoplastic and viscosity induced rate-dependent behavior into account, while the viscosity effect is eliminated in the simplified version. The models are implemented in a finite element code. The modeling effects of bearings on the seismic responses of a multi-span continuous highway bridge are investigated via nonlinear dynamic analyses for two strong earthquake ground motions. Three analytical models of isolation bearings are considered for comparison: the conventional design models and the proposed two models. Model parameters for the bearings were determined for two temperature conditions: the room temperature (+23 ◦ C) and the low temperature ( 20 ◦ C) based on experimental data. The implication of the rheology models for response prediction of a prototype bridge is studied by comparing the rotation of a plastic hinge in pier and shear strain at the top of the bearing. The comparison suggests that the modeling of RB and LRB considering rheology properties is important for rational prediction of the seismic response of highway bridges, particularly at low temperature condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call