Abstract
The Experimental Design was applied to optimize the electrocatalytic activity of La0.8Ba0.2CoO3 perovskite oxide/Active Carbon composite material in the alkaline solution for the Oxygen Evolution Reaction. After the preparation of La0.8Ba0.2CoO3, and structural characterizations, the experimental design was utilized to determine the optimal amount of the composite material and testing conditions. The overpotential was defined as the response variable, and the mass ratio of perovskite/active carbon, Potassium hydroxide (KOH) concentration, and Poly(vinylidene fluoride) (PVDF) amount were considered effective parameters. The significance of model terms is demonstrated by P-values less than 0.0500. The proposed prediction model determined the optimal amounts of 0.665 mg of PVDF, a KOH concentration of 0.609 M, and A perovskite/Active Carbon mass ratio of 2.81 with 308.22 mV overpotential (2.27% greater than the actual overpotential). The stability test of the optimized electrode material over 24 h suggests that it could be a good candidate electrocatalyst for OER with reusability potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.