Abstract

Research on microalgae has surged due to its diverse biotechnological applications and capacity for accumulating bioactive compounds. Despite considerable advancements, microalgal cultivation remains costly, prompting efforts to reduce expenses while enhancing productivity. This study proposes a cost-effective approach through the coculture of microalgae and bacteria, exploiting mutualistic interactions. An engineered consortium of Chlorella vulgaris and Stutzerimonas stutzeri strain J3BG demonstrated biofilm-like arrangements, indicative of direct cell-to-cell interactions and metabolite exchange. Strain J3BG's enzymatic characterization revealed amylase, lipase, and protease production, sustaining mutual growth. Employing Response Surface Methodology (RSM), Artificial Neural Network (ANN), and Genetic Algorithm (GA) in a hybrid modeling approach resulted in a 2.1-fold increase in chlorophyll production. Optimized conditions included a NaNO3 concentration of 128.52 mg/l, a 1:2 (Algae:Bacteria) ratio, a 6-day cultivation period, and a pH of 5.4, yielding 10.92 ± 0.88 mg/l chlorophyll concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call