Abstract

In finite element analysis, inertia relief solves the response of an unconstrained structure subject to constant or slowly varying external loads with static analysis computational cost. It is very attractive to utilize it in topology optimization to design structures under unbalanced loads, such as in impact and drop phenomena. In this paper, regional strain energy formulation and inertia relief is integrated into topology optimization to design protective structure under unbalanced loads. For background, the equations of inertia relief are introduced and a commonly used solving method is revisited. Then the regional strain energy formulation for topology optimization with inertia relief is proposed and its sensitivity is derived from the adjoint method. Based on the solving method, the sensitivity is evaluated term by term to simplify the results. The simplified sensitivity can be calculated easily using the output of commercial finite element packages. Finally, the effectiveness of this formulation is shown in the first example and the proposed regional strain energy formulation for topology optimization with inertia relief are presented and discussed in the protective structure design examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call