Abstract

Tolerance analysis is increasingly becoming an important tool for mechanical design, process planning, manufacturing, and inspection. It provides a quantitative analysis tool for evaluating the effects of manufacturing variations on performance and overall cost of the final assembly. It boosts concurrent engineering by bringing engineering design requirements and manufacturing capabilities together in a common model. It can be either worst-case or statistical. It may involve linear or nonlinear behavior. Monte Carlo simulation is the simplest and the most popular method for nonlinear statistical tolerance analysis. Monte Carlo simulation offers a powerful analytical method for predicting the effects of manufacturing variations on design performance and production cost. However, the main drawbacks of this method are that it is necessary to generate very large samples to assure calculation accuracy, and that the results of analysis contain errors of probability. In this paper, a quasi-Monte Carlo method based on good point (GP) set is proposed. The difference between the method proposed and Monte Carlo simulation lies in that the quasi-random numbers generated by Monte Carlo simulation method are replaced by ones generated by the method proposed in this paper. Compared with Monte Carlo simulation method, the proposed method provides analysis results with less calculation amount and higher precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.