Abstract
Quasi Monte Carlo (QMC) and Global Sensitivity Analysis (GSA) techniques are applied for pricing and hedging representative financial instruments of increasing complexity. We compare standard Monte Carlo (MC) vs QMC results using Sobol' low discrepancy sequences, different sampling strategies, and various analyses of performance. We find that QMC outperforms MC in most cases, including the highest-dimensional simulations, showing faster and more stable convergence. Regarding greeks computation, we compare standard approaches, based on finite differences (FD) approximations, with adjoint methods (AAD) providing evidences that, when the number of greeks is small, the FD approach combined with QMC can lead to the same accuracy as AAD, thanks to increased convergence rate and stability, thus saving a lot of implementation effort while keeping low computational cost. Using GSA, we are able to fully explain our findings in terms of reduced effective dimension of QMC simulation, allowed in most cases, but not always, by Brownian bridge discretization or PCA construction. We conclude that, beyond pricing, QMC is a very efficient technique also for computing risk measures, greeks in particular, as it allows to reduce the computational effort of high dimensional Monte Carlo simulations typical of modern risk management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.