Abstract

There is increased interest in the conversion of solar energy into green chemical energy because of the depletion of fossil fuels and their unpleasant environmental effect. Photocatalytic hydrogen generation from water involves the direct conversion of solar energy into H2 fuels, which exhibits significant advantages and immense promise. Nevertheless, photocatalytic efficiency is considerably lower than the standard range of industrial applications. Low light absorption efficiency, the rapid recombination of photogenerated electrons and holes, slow surface redox reaction kinetics and low photostability are well known to be key factors negatively affecting photocatalytic hydrogen production. Therefore, to construct highly efficient and stable photocatalysts is important and necessary for the development of photocatalytic hydrogen generation technology. In this review, quantum dots (QDs)-based photocatalysts have emerged with representative achievements. Due to their excellent light-harvesting ability, low recombination efficiency of photogenerated electrons and holes, and abundant surface active sites, QDs have attracted remarkable interest as photocatalysts and/or cocatalyst for developing highly efficient photocatalysts. In this review, the application of QDs for photocatalytic H2 production is emphatically introduced. First, the special photophysical properties of QDs are briefly described. Then, recent progress into the research on QDs in photocatalytic H2 production is introduced, in three types: semiconductor QDs (e.g., CdS, CdMnS, and InP QDs), metal QDs (e.g., Au, Pt and Ag QDs), and MXene QDs and carbon QDs (CDQs). Finally, the challenges and prospects of photocatalytic H2 evolution with QDs in the future are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.