Abstract
A novel pulsed optically stimulated luminescence (P-OSL) instrument was developed. The performance of the instrument was tested using natural quartz extracted from Japanese surface soil and feldspar in mineral specimens. The different P-OSL signals for quartz and feldspar were detected from their decay shape. It was found that the signal from feldspar decayed for 2–3 μs and the signal from quartz was measured at over 50 μs after the LED stimulation was switched off. By using a mixture of quartz and feldspar, the P-OSL protocol was improved to determine the irradiation dose. After irradiating a soil sample, a dose recovery test was conducted and the P-OSL protocol was found to be successful in reconstructing the irradiated dose with an on-time pulse of 4 and 10 μs for quartz and feldspar, respectively. Finally, a soil sample illuminated by a solar simulator was irradiated by a gamma source and then was used in the dose recovery test. The estimated dose agreed with the expected dose. From these results, it can be concluded that P-OSL dosimetry is suitable for the evaluation of the effects of a radiation accident, although further research using actual Japanese surface soil is required to improve the protocol. • A novel P-OSL instrument was developed. • The performance of the instrument was tested using natural quartz and feldspar. • An irradiated soil sample was used in a dose recovery test. • The estimated dose agreed with the expected dose.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have