Abstract

We extend the application of the techniques developed within the framework of the pseudo-Hermitian quantum mechanics to study a unitary quantum system described by an imaginary PT-symmetric potential v(x) having a continuous real spectrum. For this potential that has recently been used, in the context of optical potentials, for modeling the propagation of electromagnetic waves traveling in a waveguide half and half filled with gain and absorbing media, we give a perturbative construction of the physical Hilbert space, observables, localized states, and the equivalent Hermitian Hamiltonian. Ignoring terms of order three or higher in the non-Hermiticity parameter ζ, we show that the equivalent Hermitian Hamiltonian has the form p2∕2m+(ζ2∕2)∑n=0∞{αn(x),p2n} with αn(x) vanishing outside an interval that is three times larger than the support of v(x), i.e., in 2∕3 of the physical interaction region the potential v(x) vanishes identically. We provide a physical interpretation for this unusual behavior and comment on the classical limit of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.