Abstract

AbstractChitosan (CH) is one of the most abundant biopolymers with multiple applications. Polyvinyl pyrrolidone (PVP) has specific binding and detoxification properties that are of great interest in health care. Hence, it arises a crucial urge to develop economic sensors to analyze CH and PVP in pharmaceutical formulations and biological samples. Two portable sensors were fabricated using precipitation‐based technique, and nanoparticles‐based technique, for determination of CH and PVP in sensor 1 and 2; respectively. Linear responses of 10−5 to10−7 M and 10−2 to10−7 M at pH 3.6–4.8 and 7.2–8.4, with ideal Nernstian slopes of 60.00 and 59.83 mV /decade, and nanomolar LODs of 94.90 and 81.20 nM were observed for CH and PVP; respectively. The percentage recoveries were 100.40±1.03 and 100.19±0.64 for sensors 1 and 2; respectively. Both sensors were successfully applied in biological fluids without pre‐treatment. Accurate results were obtained using sensor 1, in pure form, pharmaceutical formulations, human plasma, rat liver and rat brain, as well as sensor 2, in pure form, pharmaceutical formulations and urine samples. The results were statistically compared with the reported methods and no significant difference was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.