Abstract

Monitoring the spectral composition of photon radiation from generating sources and emitting objects is the most informative way to analyze the radiation fields created by them. However, it is impossible to study the radiation characteristics of radiation fields of ultra short duration and high intensity using direct measurement methods. This work considers a method for reconstructing the spectral distributions of photon radiation from the profile of the secondary radiation fields recorded by a position-sensitive detector. To implement a new method of measurement in the primary beam of radiation is an extended scattering body of homogeneous material. Outside the field of the primary beam, a position-sensitive detector is placed along the generatrix of the scattering body, which records the photons of the secondary radiation and the coordinates of their emission. The spectral composition of the primary radiation beam is restored from the shape of the spatial distribution obtained. To find a quasi-solution describing the energy spectrum of the primary radiation beam, it is proposed to use the maximum likelihood expectation maximization method. The possibility of switching to measurements in secondary radiation fields having a lower intensity is confirmed by the experimental results. To form secondary radiation fields, we used a composite phantom containing three scattering bodies in the form of rectangular parallelepipeds made of graphite, aluminum, and titanium. The secondary radiation fields were recorded by a radiographic sensor. Using an X-ray source operating in a pulsed mode, images were obtained and profiles of the secondary radiation fields were formed. It is experimentally shown that the secondary radiation fields have a gradient structure and can be used to analyze the energy spectra of the radiation beams generating them. The method for reconstructing spectral distributions proposed in this work allows one to measure the energy spectra of photons using position-sensitive detectors and can be used in solving problems of diagnostics of pulsed high-intensity radiation beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call