Abstract

The photocatalytic direct conversion of carbon dioxide (CO2) from flue gas into high-value products is regarded as one of the most promising approaches to achieving carbon neutrality. Nevertheless, this direct conversion process encounters significant challenges, primarily due to practical limitations such as low CO2 concentrations and the presence of interfering substances. Porous crystalline framework materials exhibit considerable potential in flue gas conversion, attributed to their robust CO2 capture capabilities, well-defined and tunable structures, high specific surface areas, and plentiful catalytic sites. This review highlights strategies to improve the capture and activation of low-concentration CO2 by porous crystalline materials including functionalization of organic ligands, creation of open metal sites (OMSs) and Lewis basic sites (LBSs), as well as strategies to improve the catalytic activity of flue gas reforming, which encompasses anchoring of catalytic sites to the skeleton, fabricating composites, and preparing derived materials. The review aims to provide insights and guidance for the design and development of efficient catalysts specifically tailored for flue gas reforming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.