Abstract

The hardness of poly (vinyl alcohol)-cryogels (PVA-CGs) was improved under three parameter conditions: 7.5 %–12.5 % PVA, 1–5 freezing–thawing cycles (FTCs), and the addition of 0 %–10 % glycerol as a cryoprotectant. This study investigated the effects of shear stress-induced destruction (SSID) on mechanical strength by inducing rapid erosion with a high frictional force. Tolerance to SSID (Tol-SSID) exhibited different sensitivities and trends depending on the above three fabrication parameters. The measured Tol-SSID exhibited consistent and inconsistent trends with tensile strength and swelling, respectively. Tol-SSID evaluation provides new insights into the practically meaningful mechanical strength of PVA-CGs against strong friction, which simulates extreme shear stress in a bioreactor. A PVA-CG with a PVA concentration of 10 % and in two FTCs resulted in Tol-SSID and tensile strength of 88.3 % and 0.59 kPa, respectively. Here, 5 % glycerol was added to maintain the bacterial respiration activity of immobilized nitrifiers of 0.097 mg-O2/g-VSS·min and survival of 88.6 %. The continuous mode of nitrification using the optimized PVA-CG for 10 days resulted in an ammonia removal rate of 0.2173 kg-N/m3·d, which is an improvement over cases without glycerol addition: 0.1426 and 0.1472 kg-N/m3·d for PVA-CGs in two and three FTCs, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call