Abstract
We present the use of Au bowtie nanoantenna arrays (BNAs) for highly efficient, multipurpose particle manipulation with unprecedented low input power and low-numerical aperture (NA) focusing. Optical trapping efficiencies measured are up to 20× the efficiencies of conventional high-NA optical traps and are among the highest reported to date. Empirically obtained plasmonic optical trapping "phase diagrams" are introduced to detail the trapping response of the BNAs as a function of input power, wavelength, polarization, particle diameter, and BNA array spacing (number density). Using these diagrams, parameters are chosen, employing strictly the degrees-of-freedom of the input light, to engineer specific trapping tasks including (1) dexterous, single-particle trapping and manipulation, (2) trapping and manipulation of two- and three-dimensional particle clusters, and (3) particle sorting. The use of low input power densities (power and NA) suggests that this bowtie nanoantenna trapping system will be particularly attractive for lab-on-a-chip technology or biological applications aimed at reducing specimen photodamage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have