Abstract

Abstract Generally, the results of data assimilation are not well balanced dynamically due to errors in background, observations, or the model itself. So, initialization methods have been introduced to remove spurious gravity waves from the analysis. One of the initialization methods is digital filter initialization (DFI), which has been used in operational forecast systems, though its physical meaning is not well understood. Other methods eliminate high-frequency noise in optimized initial conditions by introducing physical constraints, such as the model constraint scheme, which minimizes the time tendency of model variables. In this study, a physical filter initialization (PFI) scheme, based on the model constraint scheme, is implemented in the four-dimensional variational data assimilation (4DVar) system of the Weather Research and Forecasting (WRF) Model. The impacts of the PFI scheme are examined by both single-observation and real-data experiments. The results indicate that the PFI scheme can eliminate high-frequency noise effectively, obtain flow-dependent analysis increments, and shorten forecast spinup time. Consequently, the precipitation forecast is improved to a certain extent, especially during the first few hours thanks to the shorter spinup time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.