Abstract
Phycoremediation is the use of algae for the removal or biotransformation of pollutants from wastewater. Employing this technology in the treatment of industrial effluents presents an alternative to the current practice of using conventional methods, including physical and chemical methods. In the present study, the effluent from a leather-processing chemical manufacturing facility, situated at Ranipet, Tamil Nadu, India, was treated using the microalga, Chlorella vulgaris, which was isolated from the effluent itself. The objective of this study was to treat the effluent as well as ETP (effluent treatment plant) solid waste by phycoremediation (pilot-scale field study as well as laboratory study) and to analyse the physico-chemical parameters before and after treatment. The results obtained showed that Chlorella vulgaris exhibited appreciable nutrient scavenging properties under both laboratory and field conditions, although phycoremediation carried out in sunlight (field study) gave better results. Moreover, the growth of Chlorella vulgaris was faster under field conditions.Keywords: Phycoremediation, microalgae, Chlorella vulgaris, effluent, ETP solid
Highlights
Phycoremediation is the use of macroalgae or microalgae for the removal or biotransformation of pollutants, including nutrients and xenobiotics, from wastewater and CO2 from waste air (Olguin, 2003)
An axenic culture of C. vulgaris was maintained in Bold’s basal medium (BBM) (Nichols and Bold, 1965) at 24±1°C in a thermostatically controlled environmental chamber illuminated with cool white fluorescent lamps (Philips 40 W, cool daylight, 6 500 K) at an intensity of 2 000 lux in a 12/12 h light/dark cycle
Free ammonia levels were reduced by 80%, nitrite levels by 89%, nitrates by 29% and total Kjeldahl nitrogen (TKN) by 73%
Summary
Phycoremediation is the use of macroalgae or microalgae for the removal or biotransformation of pollutants, including nutrients and xenobiotics, from wastewater and CO2 from waste air (Olguin, 2003). As microalgae use carbon dioxide as a carbon source, they can grow photoautotrophically without the addition of an organic carbon source. Unicellular green algae such as Chlorella spp. and Scenedesmus spp. have been widely used in wastewater treatment as they often colonise the ponds naturally and have fast growth rates and high nutrient removal capabilities. The use of microalgae for removal of nutrients from different wastes has been described by a number of authors (Beneman et al, 1980; De-Bashan et al, 2002; Gantar et al, 1991; Queiroz et al, 2007)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.