Abstract
The complexity of the human plasma proteome is greatly increased by post-translational modifications. Besides physiological modifications, pathological conditions such as diabetes are responsible for adding to this complexity by producing advanced glycation endproducts (AGEs). When searching for specific biomarkers it is a prerequisite to reduce this complexity prior to analysis. To do this, agarose hydrogel was used to create a high-capacity affinity layer on the modified aluminum surface of MALDI (matrix-assisted laser desorption/ionization) targets. 3-Aminophenylboronic acid was immobilized via cyanogen bromide activation as a ligand for affinity sorption of glycated proteins, followed by their direct detection by MALDI. High protein capacity of prepared MALDI chips, efficient separation and low non-specific protein binding were demonstrated. The results show that phenylboronic acid modified hydrogels are very suitable for creating affinity surfaces for the high-throughput analysis of AGEs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have