Abstract

Dry ice is used by meat and poultry processors for temperature reduction during processing and for temperature maintenance during transportation. ALIGAL™ Blue Ice (ABI), which combines the antimicrobial effect of ozone (O(3)) along with the high cooling capacity of dry ice, was investigated for its effect on bacterial reduction in air, in liquid, and on food and glass surfaces. Through proprietary means, O(3) was introduced to produce dry ice pellets to a concentration of 20 parts per million (ppm) by total weight. The ABI sublimation rate was similar to that of dry ice pellets under identical conditions, and ABI was able to hold the O(3) concentration throughout the normal shelf life of the product. Challenge studies were performed using different microorganisms, including E. coli, Campylobacter jejuni, Salmonella, and Listeria, that are critical to food safety. ABI showed significant (P < 0.05) microbial reduction during bioaerosol contamination (up to 5-log reduction of E. coli and Listeria), on chicken breast (approximately 1.3-log reduction of C. jejuni), on contact surfaces (approximately 3.9 log reduction of C. jejuni), and in liquid (2-log reduction of C. jejuni). Considering the stability of O(3), ease of use, and antimicrobial efficacy against foodborne pathogens, our results suggest that ABI is a better alternative, especially for meat and poultry processors, as compared to dry ice. Further, ABI can potentially serve as an additional processing hurdle to guard against pathogens during processing, transportation, distribution, and/or storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.