Abstract
Modern process engineering industry offers great opportunities for harvesting tremendous amounts of data, both structured and unstructured. However, significant volumes of information as well as frequently encountered inconsistencies, missing values and other discrepancies render data processing with traditional tools rather inefficient. New software solutions are being constantly developed to address this challenge, yet, as regards analytics of actual industry related data, adaptation of these instruments has been comparatively limited so far. Consequently, within the limits of this work, applicability of novel analytical instruments in the context of process engineering industry is studied for both structured and unstructured data processing. In the former case, the data describing the copper matte smelting process is analysed focusing on identification of interdependencies between key process parameters and products' properties, while in the latter case, a collection of relevant scientific articles is investigated with a view to extracting key concepts and determining major relations among them.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have