Abstract
In this paper, the EEG signal is considered for the development of the model. As the signal is nonlinear and non-stationary, the model is designed accordingly which is similar to nonlinear dynamic system identification. Initially, the signal is decomposed by a robust variational mode decomposition method for which the basic noise components are eliminated. Later, a kurtosis index method is applied to choose the best band-limited intrinsic mode functions (BLIMFs) based on their clean coefficient the model is developed using a random vector functional link neural network (RVFLN) for identification. The use of deep RVFLN provides better results as compared to simple RVFLN as explained in the result section. For verification of the system's robustness, three different epileptic signals known as pre-ictal, inter-ictal and ictal are experienced in this piece of work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Networking and Virtual Organisations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.