Abstract
In this paper, we propose deep learning frameworks based on the randomized neural network. Inspired by the principles of Random Vector Functional Link (RVFL) network, we present a deep RVFL network (dRVFL) with stacked layers. The parameters of the hidden layers of the dRVFL are randomly generated within a suitable range and kept fixed while the output weights are computed using the closed-form solution as in a standard RVFL network. We also propose an ensemble deep network (edRVFL) that can be regarded as a marriage of ensemble learning with deep learning. Unlike traditional ensembling approaches that require training several models independently from scratch, edRVFL is obtained by training a single dRVFL network once. Both dRVFL and edRVFL frameworks are generic and can be used with any RVFL variant. To illustrate this, we integrate the deep learning RVFL networks with a recently proposed sparse pre-trained RVFL (SP-RVFL). Experiments on 46 tabular UCI classification datasets and 12 sparse datasets demonstrate that the proposed deep RVFL networks outperform state-of-the-art deep feed-forward neural networks (FNNs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.