Abstract

This study investigated physical proximity and paracrine activity of neurotrophic factor-secreting cells (NTF-SCs) on beta-amyloid treated cells. Mesenchymal stem cells (MSCs) - to-NTF-SCs (Astrocyte –like cells) trans-differentiation was confirmed using immunofluorescence staining of GFAP. BDNF and NGF levels were measured by ELISA. To mimic AD-like condition, SH-SY5Y cells were exposed to 10 μM Aβ1–42. SH-SY5Y cells were allocated into Control; and Aβ1–42-treated cells. Treated cells were further classified into three subgroups including Aβ1–42 cells, Aβ1–42 cells + NTF-SCs (CM) and Aβ1–42 cells + NTF-SCs co-culture. Cell viability was measured by MTT assay. Anti-inflammatory and anti-tau hyperphosphorylation effects of NTF-SCs were assessed via monitoring TNF-α and hyperphosphorylated Tau protein expression level respectively. To explore the impact of NTF-SCs on synaptogenesis and synaptic functionality, real-time PCR assay was performed to measure the expression of synapsine 1, homer 1 and ZIF268. The level of synaptophysin was monitored via immunofluorescence staining. Data showed MSCs potential in trans-differentiating toward NTF-SCs indicated with enhanced GFAP expression (p < 0.05). ELISA assay confirmed the superiority of NTF-SCs in releasing NGF and BDNF compared to the MSCs (p < 0.05). Aβ significantly induced SH-SY5Y cells death while juxtacrine and paracrine activity of NTF-SCs significantly blunted these conditions (p < 0.05). Trans-differentiated cells had potential to reduce Tau hyperphosphorylation and TNF-α level after treatment with Aβ through juxtacrine and paracrine mechanisms (p < 0.05). Moreover, NTF-SCs significantly increased the expression rate of synapsin 1, homer 1 and zif 268 genes in Aβ-treated cells compared to matched-control group coincided with induction of synaptophysin at the protein level(p < 0.05). NTF-SCs reversed AD-like neuropathological alterations in SH-SY5Y cells via paracrine and juxtacrine mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.