Abstract
Moisture sorption isotherms for pistachio powder were determined by gravimetric method at temperatures of 15, 25, 35 and 40ºC. Some mathematical models were tested to measure the amount of fitness of experimental data. The mathematical analysis proved that Caurie model was the most appropriate one. As well, adsorptiondesorption moisture content of pistachio powder were predicted using artificial neural network (ANN) approach. The results showed that, MLP network was able to predict adsorption-desorption moisture content with R2 values of 0.998 and 0.992, respectively. Comparison of ANN results with classical sorption isotherm models revealed that ANN modeling had greater accuracy in predicting equilibrium moisture content of pistachio powder.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have