Abstract
AbstractReevaluating the materials that shape our built environment holds significant importance for sustainable construction. This research introduces newly developed natural fibre pultruded profiles, composed of flax fibres and bio-resin, customised for specific properties and targeted applications. Engineered to withstand both bending and compression loads, these profiles have been subjected to rigorous mechanical testing to demonstrate their compression and flexural strength, as well as flexibility. The emphasis lies on the bottom-up design approach, guiding the creation of applications suitable for this innovative material in various lightweight structures. The paper presents a series of case studies showcasing the use of biocomposite profiles in diverse design and structural contexts. The initial focus was on active-bending structures, highlighting the material’s flexibility, showcased at a ten-metre span structure, the first large-scale demonstrator. However, given the material’s versatile properties, it is suitable for a wide range of other applications. Key case studies discussed include reciprocal, tensegrity and deployable structures, as well as modular planar or space frame systems. These profiles offer a sustainable and versatile alternative to traditional materials and composites, providing innovative and eco-friendly construction solutions while contributing to industry sustainability goals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.