Abstract

A manufacturing system is oriented towards higher production rate, quality, and reduced cost and time to make a product. Surface roughness is an index for determining the quality of machined products and is influenced by the cutting parameters. Surface roughness prediction in machining is being attempted with many methodologies, yet there is a need to develop robust, autonomous and accurate predictive system. This work proposes the application of two different hybrid intelligent techniques, adaptive neuro fuzzy inference system (ANFIS) and radial basis function neural network- fuzzy logic (RBFNN-FL) for the prediction of surface roughness in end milling. An experimental data set is obtained with speed, feed, depth of cut and vibration as input parameters and surface roughness as output parameter. The input-output data set is used for training and validation of the proposed techniques. After validation they are forwarded for the prediction of surface roughness. Both the hybrid techniques are found to be superior over their respective individual intelligent techniques in terms of computational speed and accuracy for the prediction of surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.