Abstract
Applying an optimal race strategy is a decisive factor in achieving the best possible result in a motorsport race. This mainly implies timing the pit stops perfectly and choosing the optimal tire compounds. Strategy engineers use race simulations to assess the effects of different strategic decisions (e.g., early vs. late pit stop) on the race result before and during a race. However, in reality, races rarely run as planned and are often decided by random events, for example, accidents that cause safety car phases. Besides, the course of a race is affected by many smaller probabilistic influences, for example, variability in the lap times. Consequently, these events and influences should be modeled within the race simulation if real races are to be simulated, and a robust race strategy is to be determined. Therefore, this paper presents how state of the art and new approaches can be combined to modeling the most important probabilistic influences on motorsport races—accidents and failures, full course yellow and safety car phases, the drivers’ starting performance, and variability in lap times and pit stop durations. The modeling is done using customized probability distributions as well as a novel “ghost” car approach, which allows the realistic consideration of the effect of safety cars within the race simulation. The interaction of all influences is evaluated based on the Monte Carlo method. The results demonstrate the validity of the models and show how Monte Carlo simulation enables assessing the robustness of race strategies. Knowing the robustness improves the basis for a reasonable determination of race strategies by strategy engineers.
Highlights
Motorsport races are competitions held to determine a ranking among the participants
The race simulation is implemented in Python
We aim to focus on the optimization of race strategy using the developed race simulation
Summary
Motorsport races are competitions held to determine a ranking among the participants. The result depends on the driver and car performance and on race strategy. Since the participants of such races drive a certain number of laps on a closed circuit, they can drive into their pits at the end of every lap. Pit stops are mostly taken in order to obtain a fresh set of tires, allowing the driver to drive a faster lap time than with an old set. Since pit stops take some time, one must find an effective compromise between benefit and expanse. These aspects are determined by race strategy
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have