Abstract
The paper considers practical aspects of mathematical modeling in predictions of the level of near-field pressure pulsations of a near-future prototype supersonic business aircraft. A numerical modeling technique based on the numerical solution of the Navier-Stokes equations is proposed. The method is verified by near-field simulations of the NASA C608 supersonic low-boom demonstrator. We consider a supersonic flight with M=1.4 at a flight altitude of 16,215 m. Good convergence of our predictions with experimental data and results of other researchers is shown. Near-field sonic-boom simulations of the prototype supersonic business aircraft are used to illustrate how the method can be applied in practice for building a second-generation supersonic passenger aircraft. Two aerodynamic configurations of the aircraft are considered: no-tail and canard no-tail. The canard no-tail configuration in the as-is aircraft dimension and design was found to have no advantages over the no-tail configuration in the level of its near-field pressure pulsations because of its nonoptimality. Further recommendations for solving the near-field sonic-boom minimization problem are related to the construction of a comprehensive mathematical model enabling coupled simulations due to smooth integration of a parametrized aircraft geometry, an aerodynamic solver, and an optimizer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have