Abstract

Traditional dynamic vibration absorber (DVA) is widely used in industries as a vibration absorption equipment. However, it is only effective at narrow working frequency range. This shortcoming has limited its stability and application. This paper develops an adaptive tuned vibration absorber (ATVA) based on unique characteristics of magnetorheological elastomers (MREs), whose modulus can be controlled by an applied magnetic field. This ATVA works in shear mode and consists of dynamic mass, static mass and smart spring elements with MREs. Based on the double pole model of MR effects, the shift-frequency capability of the ATVA has been theoretically and experimentally evaluated. The experimental results demonstrated that the natural frequency of the ATVA can be tuned from 27.5Hz to 40Hz. To study its vibration absorption capacity, a beam structure with two ends supported has been employed. To analyze the vibration absorption capacity, a dynamic model of coupling beam and absorber has been established. Both the calculation and experimental results show that the absorption capacity of the developed ATVA is better than the traditional TVA and can achieve as high as 25dB which was justified by the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.