Abstract
BackgroundDeveloping a prediction model that incorporates several risk factors and accurately calculates the overall risk of birth asphyxia is necessary. The present study used a machine learning model to predict birth asphyxia.MethodsWomen who gave birth at a tertiary Hospital in Bandar Abbas, Iran, were retrospectively evaluated from January 2020 to January 2022. Data were extracted from the Iranian Maternal and Neonatal Network, a valid national system, by trained recorders using electronic medical records. Demographic factors, obstetric factors, and prenatal factors were obtained from patient records. Machine learning was used to identify the risk factors of birth asphyxia. Eight machine learning models were used in the study. To evaluate the diagnostic performance of each model, six metrics, including area under the receiver operating characteristic curve, accuracy, precision, sensitivity, specificity, and F1 score were measured in the test set.ResultsOf 8888 deliveries, we identified 380 women with a recorded birth asphyxia, giving a frequency of 4.3%. Random Forest Classification was found to be the best model to predict birth asphyxia with an accuracy of 0.99. The analysis of the importance of the variables showed that maternal chronic hypertension, maternal anemia, diabetes, drug addiction, gestational age, newborn weight, newborn sex, preeclampsia, placenta abruption, parity, intrauterine growth retardation, meconium amniotic fluid, mal-presentation, and delivery method were considered to be the weighted factors.ConclusionBirth asphyxia can be predicted using a machine learning model. Random Forest Classification was found to be an accurate algorithm to predict birth asphyxia. More research should be done to analyze appropriate variables and prepare big data to determine the best model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.