Abstract
The use of machine learning methods to optimize big data sorting algorithms has become an urgent research topic due to the growing volume of information and the requirements for their rapid processing. Machine learning provides opportunities to automate and improve traditional sorting methods, allowing you to reduce the cost of computing resources and time. This is achieved by analyzing the characteristics of the data and preprocessing them using classification and regression. The main advantages of using machine learning in sorting big data include improving the accuracy and adaptability of algorithms to different types of data, which is especially important for areas with large amounts of information, such as finance, medicine and logistics. Progressive machine learning algorithms such as supporting vectors, decision trees, and gradient boosting demonstrate high efficiency and potential for further development and integration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have