Abstract
The current study evaluates the performance of three machine learning models—Decision Trees, Random Forest, and Linear Regression—applied to aquaculture data to mitigate risks in aquaculture management. The performances of these models are analyzed and properly demonstrated using metrics including the Mean Squared Error (MSE), R-squared (R2), Root Mean Squared Error (RMSE), and Concordance Index (C-index). The Random Forest model achieved the highest prediction accuracy among all machine learning models, followed by Linear Regression and the Decision Trees. The scatter plot for Linear Regression demonstrates good predictive accuracy for mid-range values. However, it shows significant deviations at the extremes, indicating that the model struggles to capture the full range of variability in the data. The bar chart of coefficients pinpoints the variables with the greatest impact on the predictions, providing suggestions for potential areas that can be improved and providing model interpretability. Future work could incorporate more predictive statistics models focusing on improving the models for extreme values by assessing non-linear models, feature engineering methods, and expanding research into less influential variables. The results greatly impact several sections, including aquaculture management, policy-making, and operational strategies, providing valuable insights for stakeholders and decision-makers. Apache Spark was used for data processing and machine learning model implementation; Apache Cassandra was also used for data storage, ensuring efficient large dataset management and SQL tools for structured data handling; Oracle VM VirtualBox for cross-platform virtualization; and Spark Connector was also used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.