Abstract

AbstractTurbidity affects the aesthetic and overall quality of water and therefore, its prediction and modeling are essential for designing treatment strategies. In the present research, the outcomes of altering parameters and optimizing the removal of turbidity using response surface methodology (RSM), artificial neural network (ANN), support vector machine (SVM), and K‐nearest neighbor (KNN) based on a statistically designed set of experiments are examined. pH, coagulant dose, and settling time are considered process variables. The optimum removal of turbidity was obtained at a pH range of 6–8, coagulant dosage of 20–35 mg/L, and settling time of 30–45 min for the coagulants. The best turbidity reduction (60%) was achieved using alum coagulant (30 mg/L), at a pH of 7.5 and settling time for 45 min. All the models proved to be effective in demonstrating how the operating variables being studied influence the removal of turbidity from the aqueous solution. In contrast to the RSM, SVM, and KNN models, the ANN more accurately characterized the parametric impact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.