Abstract

Nowadays, there are significant issues in the classification of lithofacies and the identification of rock types in particular. Zamzama gas field demonstrates the complex nature of lithofacies due to the heterogeneous nature of the reservoir formation, while it is quite challenging to identify the lithofacies. Using our machine learning approach and cluster analysis, we can not only resolve these difficulties, but also minimize their time-consuming aspects and provide an accurate result even when the user is inexperienced. To constrain accurate reservoir models, rock type identification is a critical step in reservoir characterization. Many empirical and statistical methodologies have been established based on the effect of rock type on reservoir performance. Only well-logged data are provided, and no cores are sampled. Given these circumstances, and the fact that traditional methods such as regression are intractable, we have chosen to apply three strategies: (1) using a self-organizing map (SOM) to arrange depth intervals with similar facies into clusters; (2) clustering to split various facies into specific zones; and (3) the cluster analysis technique is used to identify rock type. In the Zamzama gas field, SOM and cluster analysis techniques discovered four group of facies, each of which was internally comparable in petrophysical properties but distinct from the others. Gamma Ray (GR), Effective Porosity(eff), Permeability (Perm) and Water Saturation (Sw) are used to generate these results. The findings and behavior of four facies shows that facies-01 and facies-02 have good characteristics for acting as gas-bearing sediments, whereas facies-03 and facies-04 are non-reservoir sediments. The outcomes of this study stated that facies-01 is an excellent rock-type zone in the reservoir of the Zamzama gas field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call