Abstract
Finite control set model predictive control (FCS-MPC) algorithms are famous in power converter for its easy implementation of constraints with cost function than classical control algortihms. However computation complexity increases when swicthing state is high for converters such as matrix converter, multilevel converters and this impose a serious drawback to compute multi-step prediction horizon MPC algorithm which further increases the computation. To overcome the above said difficulty, machine learning based artificial neural network (ANN) controller for matrix converter is proposed. The training data for ANN controller is derived from MPC algorithm and trained offline with an accuracy of 70.3%. The proposed ANN controller shows a similar and better performance than MPC controller in terms of total harmonic distortion (THD), peak overshoot during dynamic change in reference current and dynamic change in load parameter and less computation with less execution time. Further, ANN controller for matrix converter is tested in OPAL-RT using hardware in-loop (HIL) simulation and showed that it outperforms MPC controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Power Electronics and Drive Systems (IJPEDS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.