Abstract

This study aims to apply large-scale climate ensemble simulation data to evaluate the magnitude of extreme rainfall events. It was conducted on the basis of extreme rainfall that occurred in the Hiroshima region in 2018. This event recorded an extreme rainfall magnitude corresponding to a return period of 1,000 years at a 24-h rainfall duration; it is difficult to evaluate this magnitude with the concept of probability rainfall based on frequency analysis due to the short observation period. To overcome this limitation, the data for policy decision making for future (d4PDF) climate change database based on a large-scale climate ensemble simulation was used. These data provided 3,000 annual maximum daily rainfall values, which were used to empirically estimate the probability rainfall with a return period of 10-1,000 years based on a non-parametric approach without statistical methods. The estimated probability rainfall of the d4PDF was compared with the estimated probability obtained from the observed rainfall and frequency analysis. The difference between the two probability rainfall values was 3.53% for the return period of 50 years. However, as the return period increases, the error increases to more than 10%. This indicates that the estimation of the probability rainfall with a long-term return period using the observed data of a relatively short period may present uncertainties. Regarding the probability rainfall using d4PDF under present climate conditions, the Hiroshima event represented a return period of nearly 300 years. Meanwhile, for the probability rainfall using the d4PDF under future climate conditions, the Hiroshima event had a return period of nearly 100 years. Consequently, the magnitude of the probability rainfall increased in future climate conditions, and the probability of the occurrence of extreme rainfall corresponding to the Hiroshima event increased from 0.33% to 1%. Therefore, d4PDF can be used to quantitatively evaluate the magnitude of extreme rainfall events under present and future climate conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call