Abstract

A worldwide increase in the number of vehicles on the road has led to an increase in the frequency of serious traffic accidents, causing loss of life and property. Autonomous vehicles could be part of the solution, but their safe operation is dependent on the onboard LiDAR (light detection and ranging) systems used for the detection of the environment outside the vehicle. Unfortunately, problems with the application of LiDAR in autonomous vehicles remain, for example, the weakening of the echo detection capability in adverse weather conditions. The signal is also affected, even drowned out, by sensory noise outside the vehicles, and the problem can become so severe that the autonomous vehicle cannot move. Clearly, the accuracy of the stereo images sensed by the LiDAR must be improved. In this study, we developed a method to improve the acquisition of LiDAR data in adverse weather by using a combination of a Kalman filter and nearby point cloud denoising. The overall LiDAR framework was tested in experiments in a space 2 m in length and width and 0.6 m high. Normal weather and three kinds of adverse weather conditions (rain, thick smoke, and rain and thick smoke) were simulated. The results show that this system can be used to recover normal weather data from data measured by LiDAR even in adverse weather conditions. The results showed an effective improvement of 10% to 30% in the LiDAR stereo images. This method can be developed and widely applied in the future.

Highlights

  • Traffic accidents cause approximately 1.25 million deaths and hundreds of billions of dollars in economic loss worldwide each year

  • This study proposes combining a Kalman filter and neighboring point cloud segmentation algorithm to improve the acquisition of LiDAR data in inclement weather

  • LiDAR is used in many places, including in autonomous vehicles, but when the weather is bad, they are impossible to operate

Read more

Summary

Introduction

Traffic accidents cause approximately 1.25 million deaths and hundreds of billions of dollars in economic loss worldwide each year. According to the World Health Organization, it is predicted that this will become the seventh leading cause of death in the world by 2030. The most important cause of traffic accidents is driver error. The limitations of human capabilities make it impossible for drivers to quickly make reasonable decisions in the face of emergencies. With the development of artificial intelligence, along with improvements in computer and chip technology, it is possible to design autonomous vehicles, which could become one of the most important ways to reduce traffic accidents. Autonomous vehicles have stimulated a great deal of research interest [1,2,3]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call