Abstract

This paper proposes a parameter coordination optimization design of a power system stabilizer (PSS) based on an improved quasi-affine transformation evolutionary (QUATRE) algorithm to suppress low-frequency oscillation and improve the dynamic stability of power systems. To begin, the simulated annealing (SA) algorithm randomly updates the globally optimal solution of each QUATRE iteration and matches the inferior solution with a certain probability to escape the local extreme point. This new algorithm is first applied to the power system. Since the damping ratio is one of the criteria with which to measure the dynamic stability of the power system, this paper sets the objective function according to the principle of maximization of the damping coefficient of the electromechanical mode, and uses SA-QUATRE to search a group of global optimal PSS parameter combinations to improve the safety factor of the system as much as possible. Finally, the method’s rationality and validity were validated by applying it to the simulation examples of the IEEE 4-machine 2-area system with different operation states. The comparison with the traditional optimization algorithm shows that the proposed method has more advantages for multi-machine PSS parameter coordination optimization, can restrain the low-frequency oscillation of the power system more effectively and can enhance the system’s stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.